Vitexin protects against hypoxic-ischemic injury via inhibiting Ca2+/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain

نویسندگان

  • Jia-Wei Min
  • Wei-Lin Kong
  • Song Han
  • Nageeb Bsoul
  • Wan-Hong Liu
  • Xiao-Hua He
  • Russell M. Sanchez
  • Bi-Wen Peng
چکیده

Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca2+/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct volume in a dose-dependent manner. In addition, vitexin decreased the number of TUNEL-positive cells and brain atrophy. Furthermore, vitexin improved neurobehavioral outcomes. Vitexin also reduced oxygen glucose deprivation-induced neuronal injury and calcium entry. Vitexin pretreatment increased the Bcl-2/Bax protein ratio and decreased phosphorylation of Ca2+/Calmodulin-dependent protein kinase II and NF-κB, cleaved caspase-3 protein expression 24 hours after injury. Our data indicate that pretreatment with vitexin protects against neonatal hypoxic-ischemic brain injury and thus has potential as a treatment for hypoxic-ischemic brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+/Calmodulin-Dependent Protein Kinase II Contributes to Hypoxic Ischemic Cell Death in Neonatal Hippocampal Slice Cultures

We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic pl...

متن کامل

Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia

Neonatal hypoxic-ischemic brain injury is a devastating disease with limited treatment options. Preventive treatment with resveratrol has indicated to be well tolerated and has lower toxicity in both experimental models and human patients. However, whether resveratrol administration post-hypoxic-ischemic protects against neonatal hypoxic-ischemic injury is not known. Here we reported that post-...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Ginkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway

Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...

متن کامل

Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis

BACKGROUND Perioperative hypoxia may induce microglial inflammation and apoptosis, resulting in brain injury. The neuroprotective effect of propofol against hypoxia has been reported, but the underlying mechanisms are far from clear. In this study, we explored whether and how propofol could attenuate microglia BV2 cells from CoCl2-induced hypoxic injury. METHODS Mouse microglia BV2 cells were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017